

New Horizons in HSC Gene Therapy

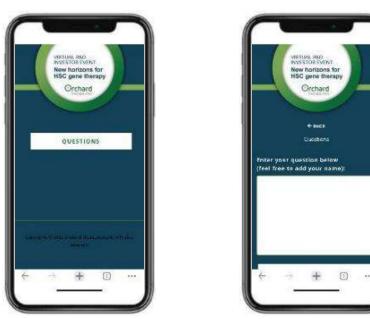
R&D Investor Event

November 13, 2020

Forward Looking Statements

Certain information set forth in this presentation and in statements made orally during this presentation contains "forward-looking statements". Except for statements of historical fact, information contained herein constitutes forward-looking statements and may include, but is not limited to, the Company's expectations regarding: (I) the safety and efficacy of its product candidates; (II) the expected development of the Company's business and product candidates; (III) the timing of regulatory submissions for approval of its product candidates; (IV) the timing of interactions with regulators and regulatory submissions related to ongoing and new clinical trials for its product candidates; (V) the timing of announcement of preclinical data for its product candidates and the likelihood that such data will be positive and support further development and regulatory approval of these product candidates; (VI) the timing and likelihood of approval of such product candidates by the applicable regulatory authorities; (VII) the adequacy of the Company's manufacturing capacity and plans for future investment and commercialization; (VIII) execution of the Company's vision and growth strategy, including with respect to global growth; (IX) the size and value of potential markets for the Company's product candidates; "exects," "intends," "plans," "anticipates," "believes," "estimates," "predicts," "potential," "continue," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Forward-looking statements are provided to allow investors the opportunity to understand management's beliefs and opinions in respect of the future so that they may use such beliefs and opinions as one factor in evaluating an investment.

These statements are neither promises nor guarantees of future performance. Such forward-looking statements necessarily involve known and unknown risks and uncertainties, which include, without limitation, the severity of the impact of the COVID-19 pandemic on the Company's business, including on preclinical and clinical development and commercial programs, which may cause actual performance and financial results in future periods to differ materially from any projections of future performance or results expressed or implied by such forward-looking statements. You are cautioned not to place undue reliance on forward-looking statements. These statements are subject to a variety of risks and uncertainties, many of which are beyond the Company's control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. For additional disclosure regarding these and other risks faced by the Company, see the disclosure contained in the Company's public filings with the U.S. Securities and Exchange Commission (the "SEC"), including in the Company's quarterly report on Form 10-Q filed with the SEC on November 3, 2020, as well as subsequent filings and reports filed with the SEC. These forward-looking statements speak only as of the date of this presentation. The Company undertakes no obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.


Q&A Session How-to

Q&A

Please use this link to submit your questions and interact with the speakers:

www.privilege-webapp.eu

We recommend opening the link from your mobile.

Live Streaming

If your screen freezes at any point during the live stream, please refresh the page.

Delivering Now; Building for the Future

Bobby Gaspar, M.D., Ph.D.

Chief executive officer

Today's Agenda

TIME	AGENDA TOPIC	SPEAKER	
9:00 – 9:15am	Delivering Now; Building for the Future	Bobby Gaspar	
9:15 – 9:35am	HSC Gene Therapy for Frontotemporal Dementia & Amyotrophic Lateral Sclerosis	Alessandra Biffi	
9:35 – 9:55am	HSC Gene Therapy for Crohn's Disease	Bobby Gaspar & Piv Sagoo	
9:55 – 10:10am	Q&A		
10:10 – 10:30am	Scaling Manufacturing for Larger Indications	Ran Zheng & Bobby Gaspar	
10:30 – 10:45am	Revisiting Delivering Now; Building for the Future	Frank Thomas	
10:45 – 11:00am	Q&A		
5		therapeutics	

New Horizons in HSC Gene Therapy

What you will see and hear today

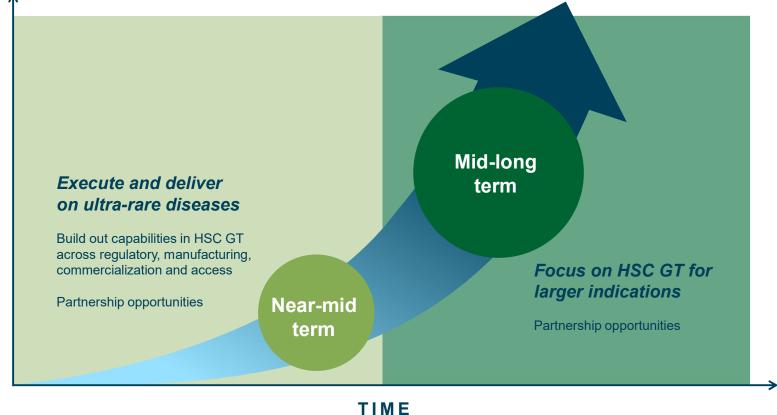
HSC gene therapy has the potential to treat a broad range of severe diseases

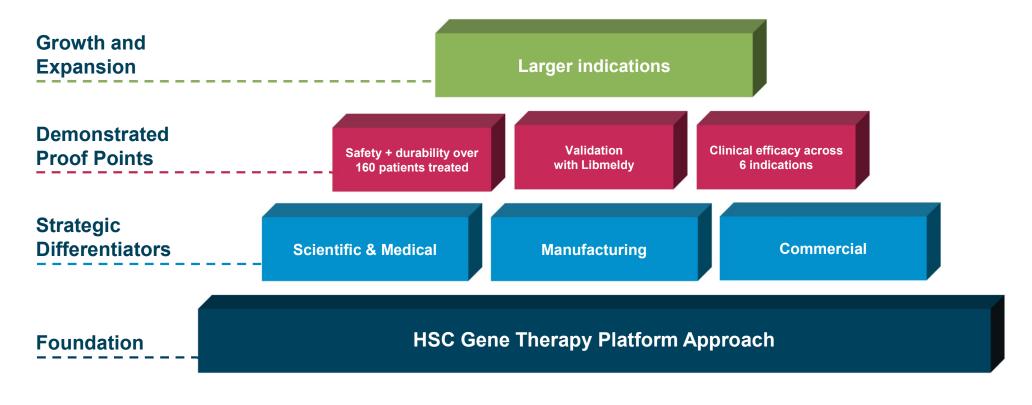
Clinical validation in rare disorders builds confidence for larger indications

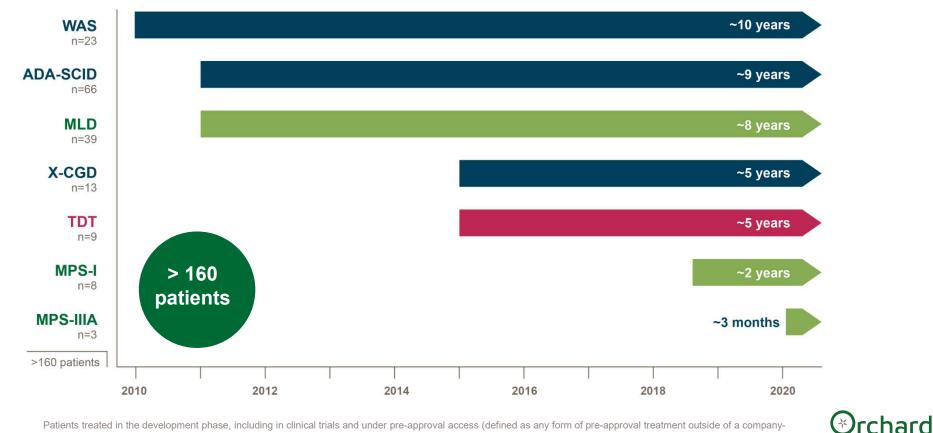
FTD, Crohn's and ALS programs are backed by strong scientific rationale

Prioritizing innovation in manufacturing to accelerate profitability and scale-up

Building commercial capabilities to leverage with future products

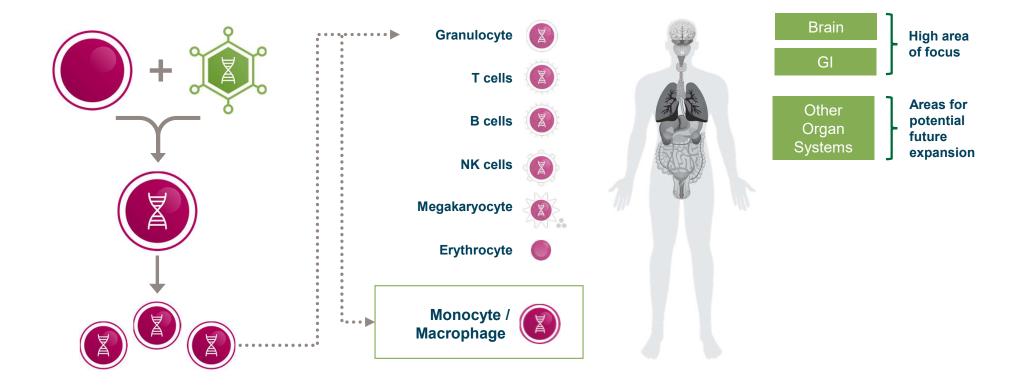

Dedicated to **transforming** the lives of people with rare diseases.


Evolving from Rare to Larger Indications


VALUE

Delivering Now; Building for the Future

Durability of Response with Lentiviral HSC Gene Therapy Demonstrated via Longest Patient Follow-up


Patients treated in the development phase, including in clinical trials and under pre-approval access (defined as any form of pre-approval treatment outside of a companysponsored clinical trial, including, but not limited to, compassionate use, early access, hospital exemption or special license).

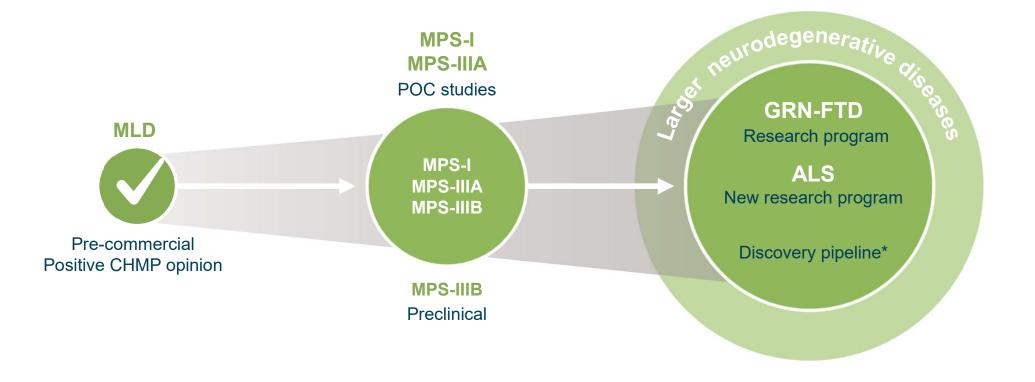
therapeutics^{*}

Data based on in-house data as of December 2019. Data include all patients treated with CD34+ hematopoietic stem cells transduced ex vivo with vector of interest.

10 |

Expanding the HSC Gene Therapy in Larger Indications

Literature references: Alessia Capotondo, Rita Milazzo, Letterio Salvatore Politi, Angelo Quattrini, Alessio Palini, Tiziana Plati, Stefania Merella, Alessandro Nonis, Clelia di Serio, Eugenio Montini, Luigi Naldini, and Alessandra Biffi, PNAS September 11, 2012 109 (37) 15018-15023; https://doi.org/10.1073/pnas.1205858109; Tissue macrophages: heterogeneity and functions, Siamon Gordon and Annette Plüddemann, BMC Biology 2017 15:53, 29 June 2017


Selection of New Indications is Strategic and Science-Driven

Etiology	Underlying genetic association / causation	Clinical experience	High level of unmet need
 Dysfunctional cell is progeny of HSCs or can be corrected through interaction with HSC progeny 	 <i>Ex 1: NOD2</i> mutation strongly associated with Crohn's disease <i>Ex 2: GRN</i> mutation strongly associated with FTD 	 Human or animal study data that cellular phenotype can be corrected by HSCT or by HSC gene therapy 	 Benefit / risk profile Refractory to current therapies Lack of available treatment options

Potential for HSC Gene Therapy to Become Standard of Care

Clinical Validation in Rare Disorders Supports Application in Larger Populations such as GRN-FTD and ALS

*Other undisclosed development programs

Today's Agenda

ТІМЕ	AGENDA TOPIC	SPEAKER	
9:00 – 9:15am	Delivering Now; Building for the Future Bobby Gaspar		
9:15 – 9:35am	HSC Gene Therapy for Frontotemporal Dementia & Amyotrophic Lateral Sclerosis	Alessandra Biffi	
9:35 – 9:55am	HSC Gene Therapy for Crohn's Disease	Bobby Gaspar & Piv Sagoo	
9:55 – 10:10am	Q&A		
10:10 – 10:30am	Scaling Manufacturing for Larger Indications	Ran Zheng & Bobby Gaspar	
10:30 – 10:45am	Revisiting Delivering Now; Building for the Future	Frank Thomas	
10:45 – 11:00am	Q&A		
14		Conchard therapeutics	

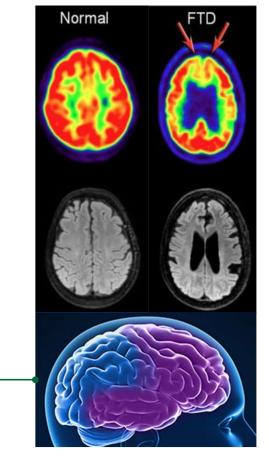
HSC Gene Therapy in GRN-FTD and ALS

Alessandra Biffi

Professor and chair of the Pediatric Hematology, Oncology and Stem Cell Transplant Division at University of Padua, faculty of pediatrics at Harvard Medical School and co-director of the Gene Therapy Program at Dana Farber/Boston Children's Cancer and Blood Disorders Center

Frontotemporal Dementia (FTD) Disease Background

Second most common dementia in people under 65 after Alzheimer's Disease (onset at ~58)


Atrophy of frontal and temporal lobes

Progressive changes in behavior and personality: <u>Early</u> decline in social and personal interactions, depression, apathy, emotional blunting, disinhibition, language disorders

<u>Late</u> general cognitive decline

Death within 6-9 years from onset, 3-4 years from diagnosis

No cure or treatment

16 www.ninds.nih.gov

GRN-FTD Represents Large and Growing Opportunity

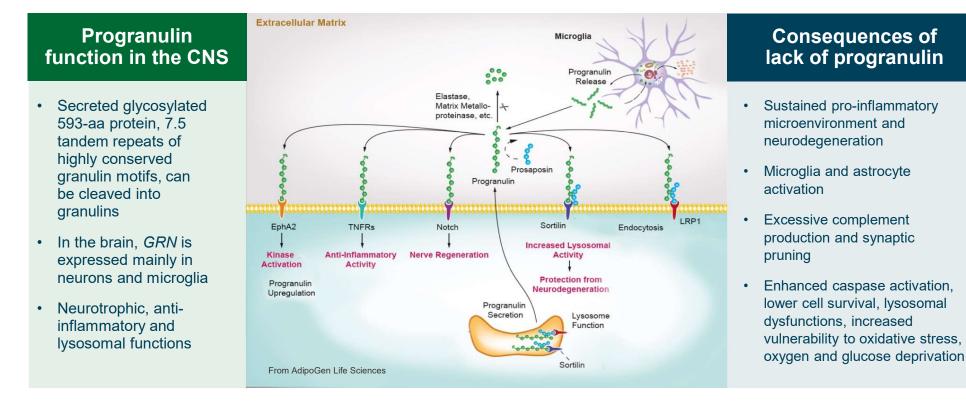
> **50,000** FTD patients diagnosed in U.S. and EU today

THE OPPORTUNITY

GRN-FTD is a growing opportunity

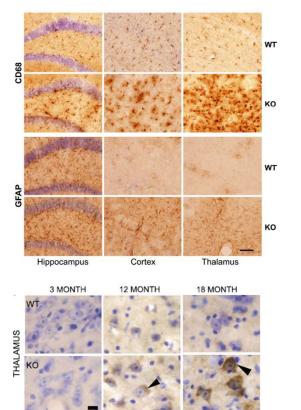
- Haploinsufficiency of progranulin (GRN) strongly associated with FTD (~5% of cases)
- Mutation known to have high penetrance
- Up to 2,500 GRN-FTD prevalent patients in U.S. and EU
- ~800 new cases U.S. / EU per year

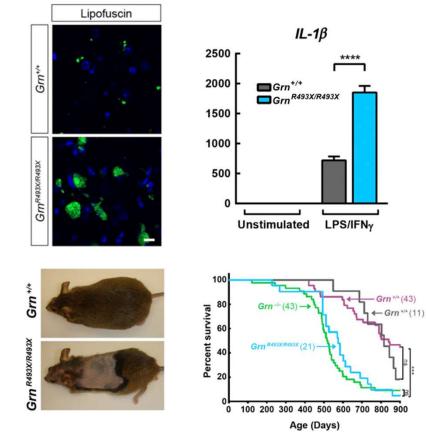
OUR UNIQUE POSITIONING


HSC gene therapy has demonstrated potential to treat diseases of the brain

- Ideal for targeting single gene mutations
- Mechanism of CNS gene delivery validated by clinical data from MLD, MPS-I, MPS-IIIA
- Gene-modified HSCs enable delivery of *GRN* to brain

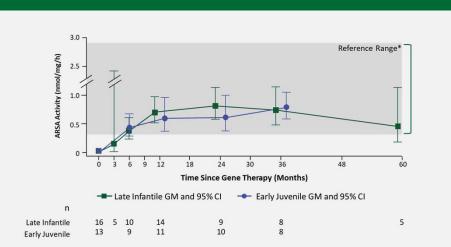
Sources: Knopman DS, Roberts RO. J Mol Neurosci. 2011, Onyike CU, Diehl-Schmid J. Int Rev Psychiatry. 2013 and Riedl L, et al Neuropsychiatr Dis Treat. 2014


Progranulin Carries Important Neurotrophic, Anti-inflammatory and Lysosomal Functions

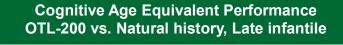


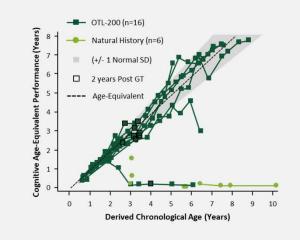
Knockout Mouse Models Recapitulate Human Phenotypes

- Microgliosis
- Lipofuscinosis
- Hyperinflammatory macrophages
- Cytoplasmic pTDP43
- Excessive grooming behavior
- Reduced survival due to infections


Nguyen (2018) PNAS, Yin (2010) FASEB J, Yin (2010) J Exp Med

Crchard therapeutics


OTL-204 ex vivo HSC Gene Therapy Program for GRN-FTD



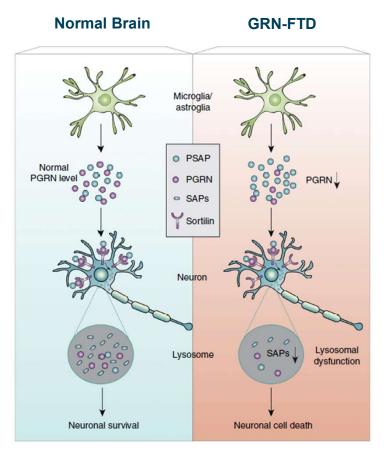
Strong Evidence of Durable, Whole Brain Effect of *Ex Vivo* HSC Gene Therapy Supported by OTL-200 Clinical Dataset

OTL-200 ARSA Activity in Cerebrospinal Fluid

Evidence from OTL-200 development program suggests durable CNS engraftment of <u>genetically-corrected cells and sustained clinical efficacy</u>

ARSA, arylsulfatase A; Cl, confidence interval; GM, geometric mean; GMs and 95% Cls are presented where there are at least 3 patients with non-missing data; Figure from Fumagalli F et al. Lentiviral hematopoietic stem cell gene therapy (HSC-GT) for metachromatic leukodystrophy (MLD) provides sustained clinical benefit; ARSA Activity in CSF Presented at: 2019 Annual Symposium of the Society for the Study of Inborn Errors of Metabolism (SSIEM); September 3-6, 2019; Rotterdam, The Netherlands; Cognitive Age-Equivalent at each visit has been derived as follows: For WPPSI and WISC: (DQp x Chronological Age)/100. For Bayley III: Cognitive Rave Secres have been compared to the tabulated values in the Bayley III manual to calculate Cognitive Age-Equivalent. For Bayley III: Cognitive Age-Equivalent for Bayley III: Cognitive Age-Equivalent is based on Mental Development Age as reported on the CRF. The Psychological Corporation. 2006.Bayley N.

21 Bayley scales of infant and Toddler Development. Third Edition. San Antonio. Cognitive Age Equivalent Performance Presented at: 2019 Annual Symposium of the Society for the Study of Inborn Errors of Metabolism (SSIEM); September 3-6, 2019; Rotterdam, The Netherlands.


Microglia Cells Are the Ideal Therapeutic Target in GRN-FTD

Autologous HSCs transduced with a *GRN*-encoding LV for the treatment of FTD

Engrafted microglia cells would provide a long-lasting endogenous source of *GRN* directly in the CNS

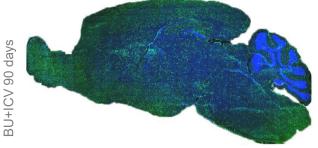
Locally secreted *GRN* would cross-correct neighboring neurons and at the same time mediate the uptake of prosaposin (PSAP) by neurons via the Sortilin receptor.

Saposin peptides (SAPs) are essential for lysosomal function and neuronal survival. PSAP+/- mice have FTD-like glial activation and behavioral phenotypes

Zhou (2017) Nat Commun

OTL-204 Is Highly Suited for GRN-FTD

			OTL-204	AAV approaches	Biologics	Small molecule approaches
Efficacy –	Γ	Directly restores wild type GRN		MAb mAb	X	X
		Correct microglia phenotype		X	X	X
	1	Whole brain effect		8	•	
		Restores neuronal function via cross-correction		×	X	X
Safety -	ſ	Low risk of immunogenicity		•	?	
		Myeloablative conditioning	?*	N/A	N/A	N/A
Administration –	Γ	Single			X	X
	1	Durability		?	N/A	N/A

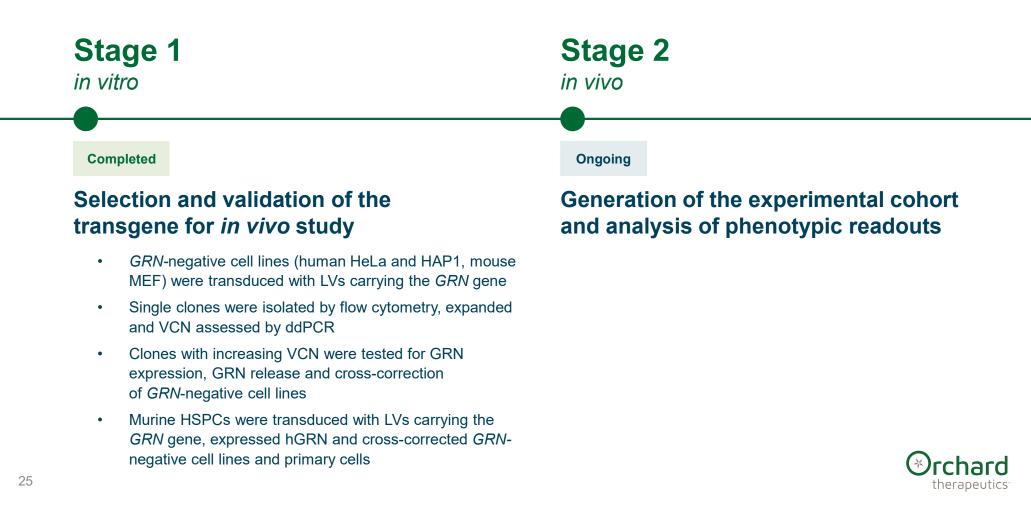

*Ongoing developments to provide safe, brain targeted conditioning

Ongoing Developments to Enhance Efficacy and Safety of OTL-204 Through Route of Delivery and Conditioning Regimen

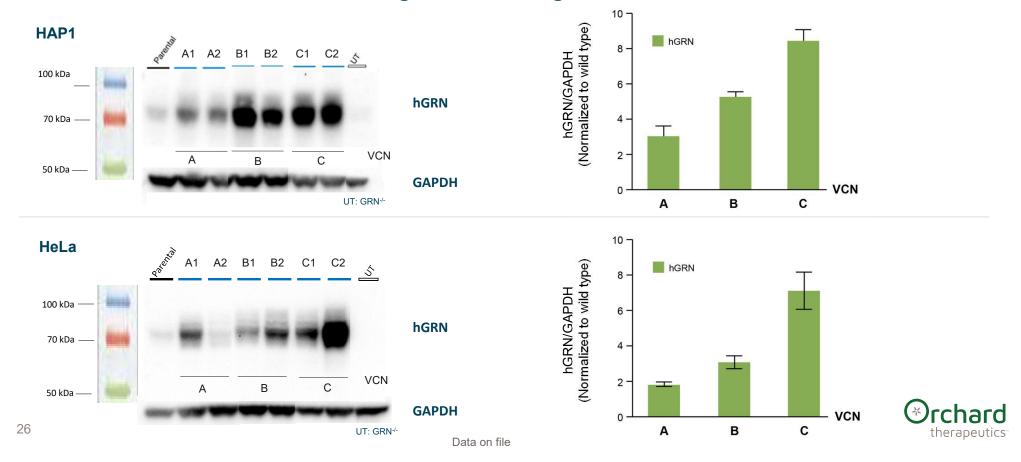
Conditioning is necessary to eliminate pre-existing microglia progenitors and "make space" for HSCs to engraft

Systemic conditioning with alkylating agents has proved to allow efficient brain engraftment in other diseases (MLD, MPS-I) with strong risk/benefit rationale

Capotondo (2017) Sci Adv

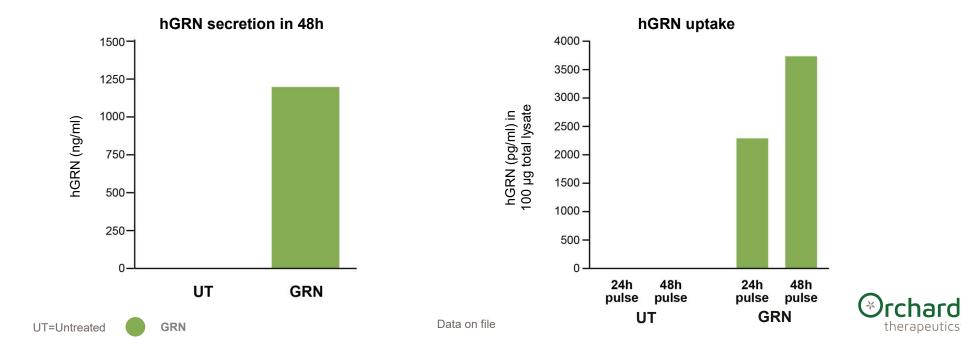

Following conditioning, HSC gene therapy delivered via ICV injection would enable efficient and targeted myeloid cell engraftment in the CNS

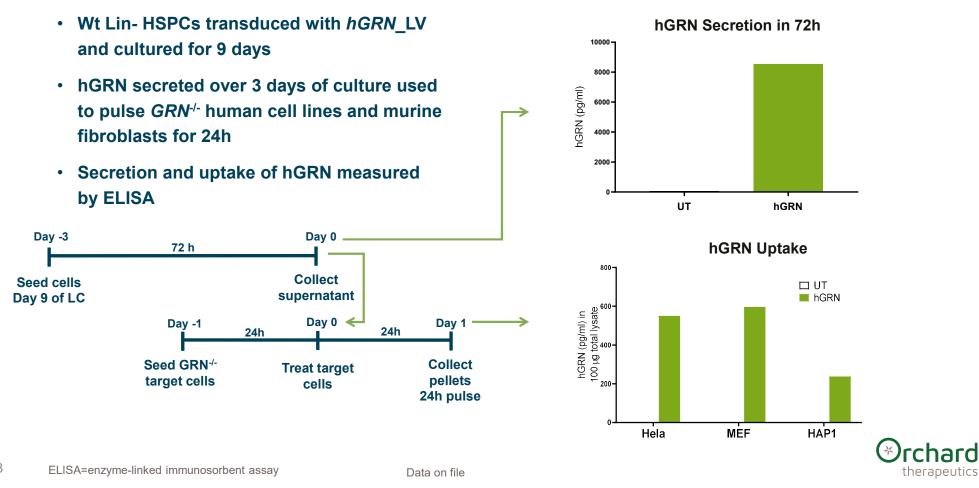
> Ongoing developments in brain-specific conditioning agents target maintenance of brain engraftment potential but with lower systemic impact


Peviani (2019) Biomaterials; ICV=intracerebroventricular (

Status of OTL-204 Development Plan

hGRN Is Efficiently Expressed in Transduced Cells In Vitro


GRN^{-/-} human cell lines were stably transduced with *hGRN*_LV and expressed hGRN at high levels after gene transfer


Evidence of Cross-correction of *GRN*^{-/-} **cells**

hGRN effectively secreted by transduced *GRN*^{-/-} cell clones in culture medium

Secreted GRN taken up by *GRN*-/cells from conditioned medium 48h>24h

Transduced mHSPCs Secrete hGRN and Cross-correct GRN^{-/-} cells

28

OTL-205 ex vivo HSC Gene Therapy Program for ALS

Amyotrophic Lateral Sclerosis (ALS) Disease Overview

Progressive degeneration of upper and lower motor neurons Muscular weakness, twitching and atrophy cause difficulty speaking, swallowing, breathing **Spinal Cord** Neurodegeneration 80-90% sporadic (onset at 58-63) 10-20% familial (onset at 47-52) Damaged Muscle No effective treatment Absence of Survival 2-4 years from onset, 1-2 years from diagnosis Signalling Incidence: 2.1-3.8 per 100k (EU) and 1.0-2.6 per 100k (US), for a total of 12-15k patients per year Prevalence: 30-40k patients in the U.S. and EU

30 Source: Taylor, J. Paul, Robert H. Brown, and Don W. Cleveland. "Decoding ALS: from genes to mechanism." Nature 539.7628 (2016): 197-206.

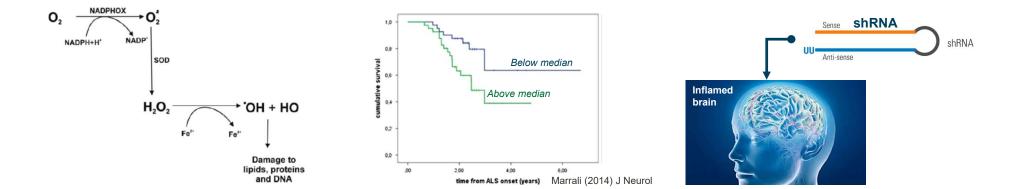
Microglia Cells Contribute to ALS

Mutations in different genes lead to abnormalities in RNA metabolism, DNA repair, protein homeostasis and endosomal trafficking, which cause glial dysfunction and motor neuron axonopathy

Characteristic **strong neuroinflammation** with reactive gliosis, lymphocyte infiltration, secretion of inflammatory cytokines and oxidative stress accumulation
 Healthy
 ALS

 Image: Property of the second second

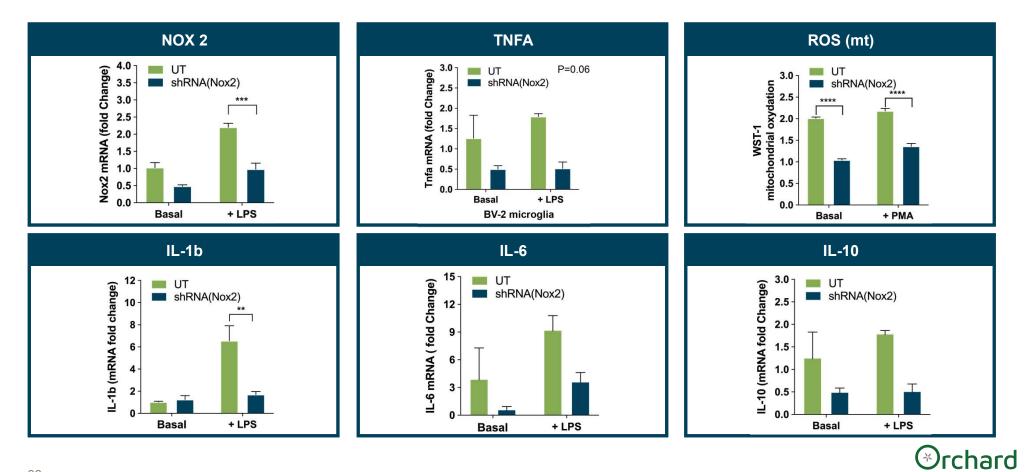
Boillee (2006), Science


Microglia cells are a major contributor to neuronal loss

Restoring healthy non-activated microglia by transplant of genetically modified HSCs has potential to improve symptoms and prolong survival by favorably modulating neuroinflammation

31 Hardiman (2017) Nat Rev Dis Prim

Depleting NOX2 with HSC GT Could Reduce Oxidative Stress



Oxidative stress is one mechanisms by which motor neuron death occurs in ALS Nox2 is part of the NADPH oxidase complex, which induces oxidative stress and damage to molecules and organelles

Lower Nox2 activity correlates with increased survival in ALS patients shRNA-mediated Nox2 depletion with HSC GT could benefit all ALS patients, in contrast to those with a specific genetic susceptibility

Early *In Vitro* Experiments Show Potential to Reduce Multiple Neuro-inflammation Markers

therapeutics

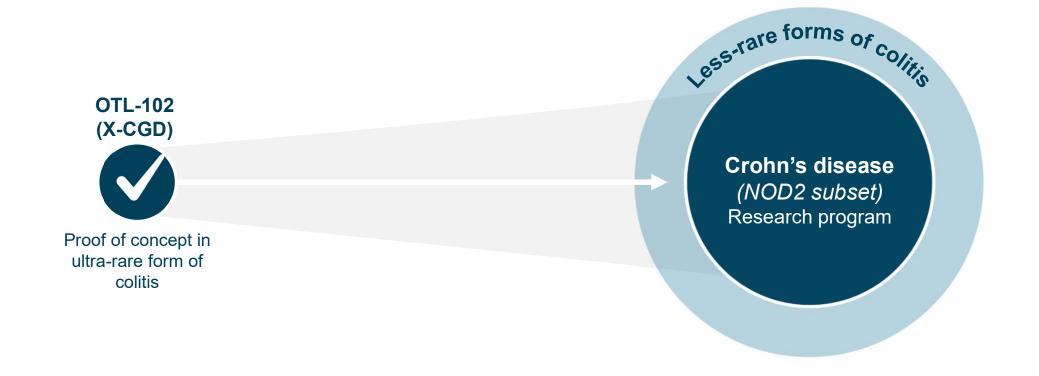
HSC GT Provides Compelling Opportunity in GRN-FTD and ALS

Our Approach	Opportunity	Current status	Next steps
<i>Ex vivo</i> HSC gene therapy restores healthy microglia function and rescues neuronal phenotype via secretion of therapeutic gene products and cross- correction	 GRN-FTD market opportunity represents up to 2,500 patients and growing Large market opportunity in ALS 	 Gene modified HSCs lead to GRN expression and secretion in the culture medium and uptake by GRN negative cells for cross-correction Expression of an shRNA targeting NOX2 can downregulate neuroinflammatory responses in ALS 	Murine studies in GRN- FTD and ALS designed to establish <i>in vivo</i> effect of HSC gene therapy for severe neurodegenerative conditions
			Srchard

therapeutics

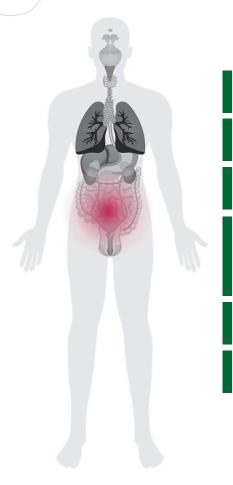
Today's Agenda

ТІМЕ	AGENDA TOPIC	SPEAKER	
9:00 – 9:15am	Delivering Now; Building for the Future	Bobby Gaspar	
9:15 – 9:35am	HSC Gene Therapy for Frontotemporal Dementia & Amyotrophic Lateral Sclerosis	Alessandra Biffi	
9:35 – 9:55am	HSC Gene Therapy for Crohn's Disease	Bobby Gaspar & Piv Sagoo	
9:55 – 10:10am	Q&A		
10:10 – 10:30am	Scaling Manufacturing for Larger Indications	Ran Zheng & Bobby Gaspar	
10:30 – 10:45am	Revisiting Delivering Now; Building for the Future	Frank Thomas	
10:45 – 11:00am	Q&A		
35		Chard	


HSC Gene Therapy for NOD2 Crohn's Disease

Bobby Gaspar, M.D., Ph.D.

Chief executive officer

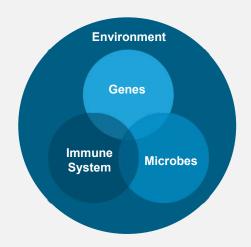


Clinical Validation with OTL-102 for X-CGD Indicates Potential for Application in Crohn's Disease

Crohn's Disease Overview

Chronic inflammatory bowel disease

Primarily affecting ileum


Symptoms develop from ~15 yrs

Clinical management by antiinflammatory medications & surgical resection

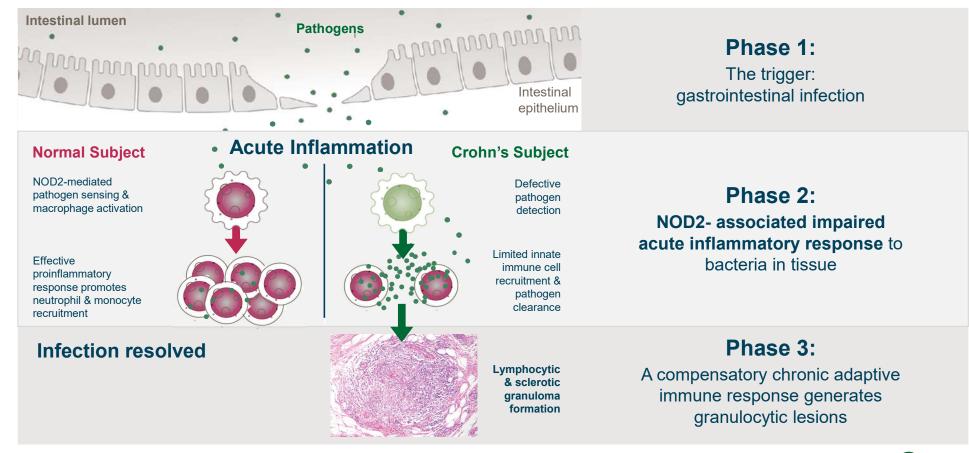
Limited therapies, no cure available

High prevalence

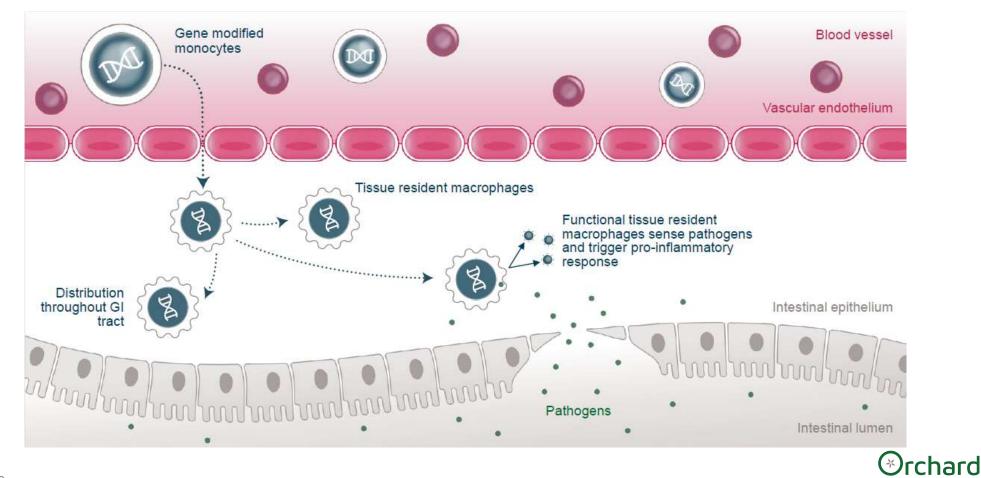
Contributing causal factors

20-40% of Crohn's patients carry NOD2 mutations

- *NOD2* function: detection of bacterial peptides
- > 60 reported NOD2 mutations
- 3 SNPs exhibit strongest association
- *NOD2* Crohn's patients are more refractory to therapy & have more severe disease


https://www.biorxiv.org/content/10.1101/098574v2.full https://www.frontiersin.org/articles/10.3389/fimmu.2016.00367/full

https://pubmed.ncbi.nlm.nih.gov/28601423/


38

NOD2 Associated Crohn's Disease Is Driven by Impaired Intestinal Pathogen Sensing and Clearance

HSC Transplants Give Rise to Tissue Macrophages with the Potential to Reconstitute Functional Gut Innate Immunity

therapeutics

HSC GT Approach for Crohn's Disease Is Supported by Numerous Factors

Etiology	Underlying genetic association	HSCT clinical experience	High level of unmet need	
Clear link between dysfunctional immune cells, which are the progeny of HSCs, and Crohn's disease	NOD2 defect strongly associated with Crohn's disease	Previous autologous HSCT clinical trials Allogeneic HSCT corrects X-CGD and IL10 deficiency ¹	No efficacious treatments for severe, refractory disease	
•	Ì	•		
Potential HSC GT solution (OTL-104)				

¹https://jamanetwork.com/journals/jama/fullarticle/2475462; 2https://www.nejm.org/doi/full/10.1056/nejmoa0907206

NOD2-Crohn's Represents a Significant Commercial Opportunity

THE OPPORTUNITY **NOD2-Crohn's** is a significant segment of Crohn's disease • Up to 200,000 estimated patients with two mutated NOD2 alleles (7-10% of all

 NOD2-CD is increasingly recognized as a monogenic form of CD

Crohn's disease) in the U.S. and EU^{1,2,3}

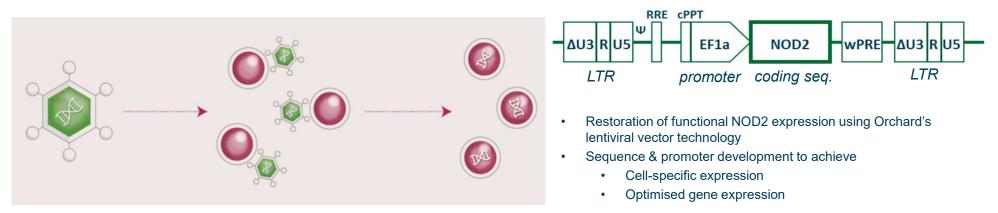
OUR UNIQUE POSITIONING

HSC gene therapy has already demonstrated potential to treat other forms of colitis

- HSC GT and HSCT correct colitis in X-CGD + other monogenic PIDs
- NOD2-CD disorder of monocytes / macrophages in GI wall
- NOD2 patients often have severe relapsing disease despite immunosuppressive therapy
- Severe CD already associated with need for autologous HSCT

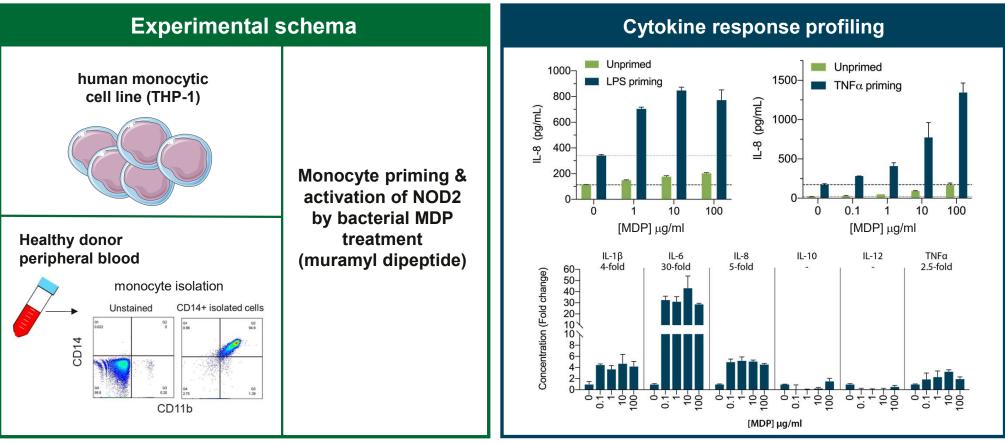
^{1,2}CD prevalence estimates: Centers for Disease Control and Prevention; European Crohn's and Colitis Organisation (ECCO) ³NOD2: Ashton, James J et al.Clin Transl Gastroenterol. 2020 Feb

OTL-104 ex vivo HSC Gene Therapy Program for NOD2 Crohn's Disease


Piv Sagoo

Director, gene and cell therapy research

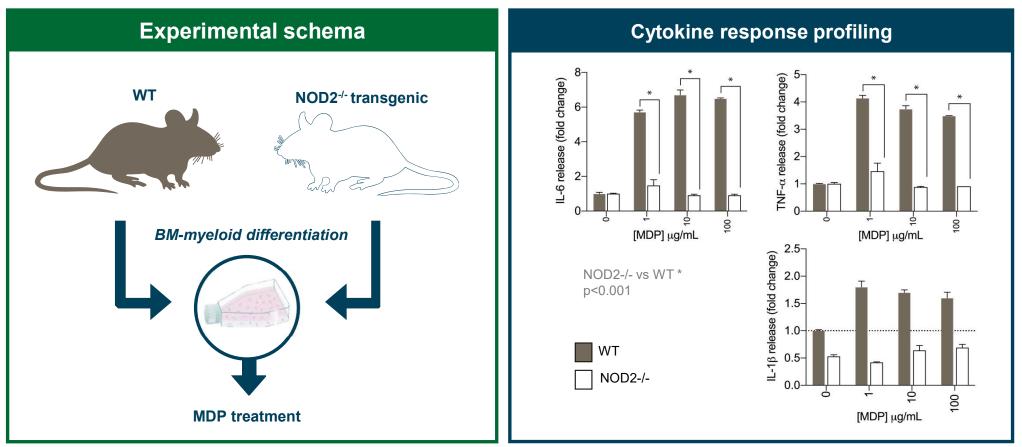
Gene Therapy Approach to Restore NOD2


HSC Lentiviral Gene Therapy: Insertion of functional NOD2

Internal Discovery Research program underway: Preclinical PoC development

Di	iscovery Research		Preclinical (IND enabling studies)
• Tar	get identification	\checkmark	CMC process – Vector
• Der	monstration of Mode of Action	\checkmark	CMC process – Drug Product
• Car	ndidate therapeutic selection	ongoing	Assay Development
• In v	<i>vitro</i> & <i>In vivo</i> efficacy	ongoing	GLP Tox & Biodistribution

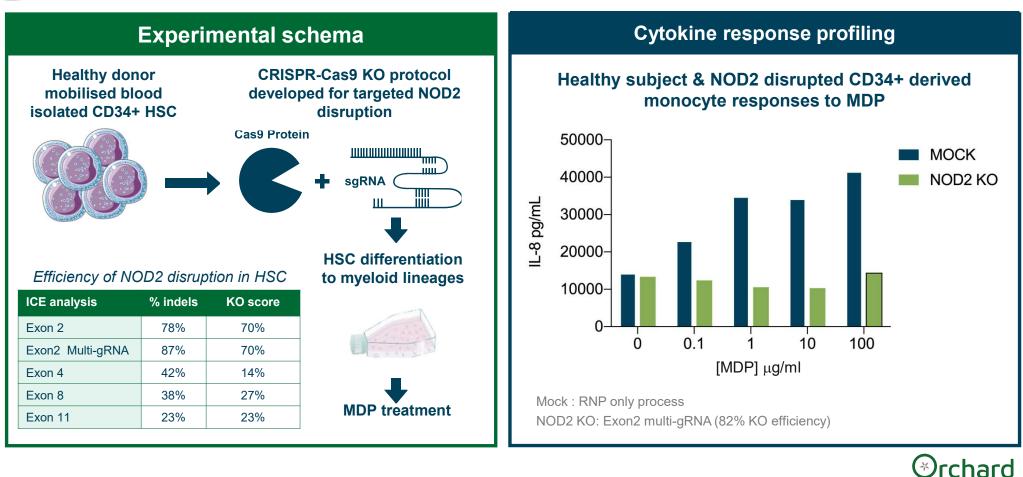
NOD2 Activation Drives Robust Inflammatory Cytokine Release by Monocytes



NOD2 activation by MDP recapitulates a classical innate proinflammatory response required to orchestrate effective neutrophil recruitment

Data on file

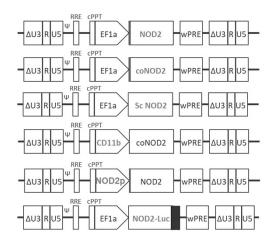
NOD2 Deficiency in Mouse Renders Monocytes Unresponsive to Bacterial MDP



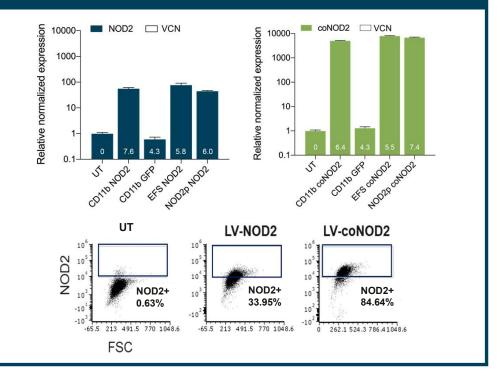
NOD2-/- monocytes and DCs lack broad proinflammatory cytokine release essential for induction and recruitment of cellular immune responses to infection

Data on file

Modeling Human NOD2-deficiency Demonstrates Defective MDP Sensing and Cytokine Output

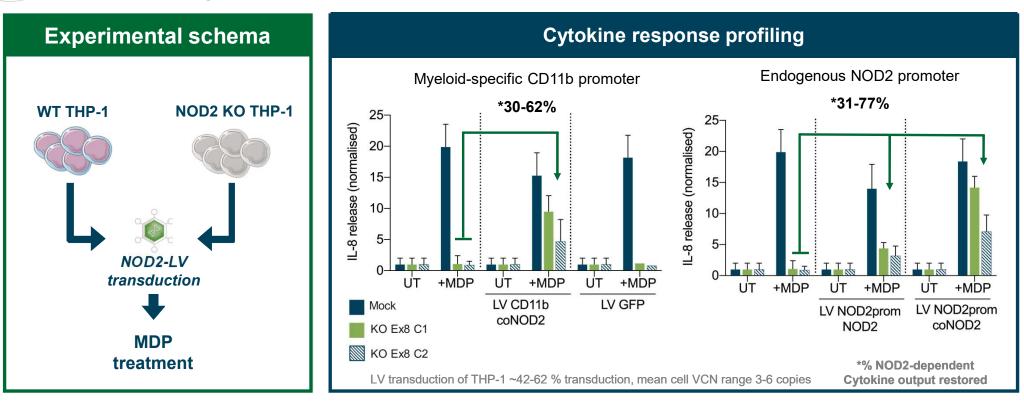


therapeutics

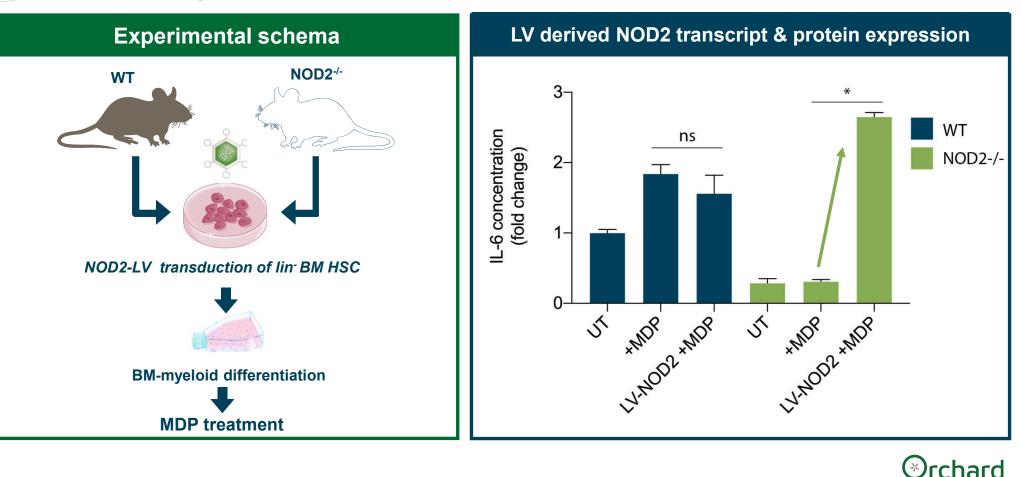

Lentiviral Vector Development for Restoration of Functional NOD2

Therapeutic vectors designed & generated for evaluation

- Minimal vector components (Orchard backbone)
- **Transgene:** Codon optimized & WT cDNA, scrambled NOD2
- Promoter: myeloid, constitutive, endogenous (NOD2+NFkBre)
- Reporters: Luciferase & fluorescent reporter transgenes



LV derived NOD2 transcript & protein expression


LV Transduction of NOD2 Deficient Human Monocytes Restores Inflammatory Responses to MDP

- Regulation of NOD2 cellular sensitivity to MDP
- Codon optimized transgenes deliver improved NOD2 expression and function
- Ongoing profiling of other immune cellular functions on LV mediated NOD2 expression

Lentiviral Transduction of NOD2 -/- Mouse HSC Restores Monocyte Inflammatory Responses to MDP

therapeutics^{*}

OTL-104 for NOD2 Crohn's Disease Conclusions

NOD2 function is an important driver of the innate cellular immune response to bacterial infection

Evidence that defective NOD2 function results in impaired proinflammatory cytokine release

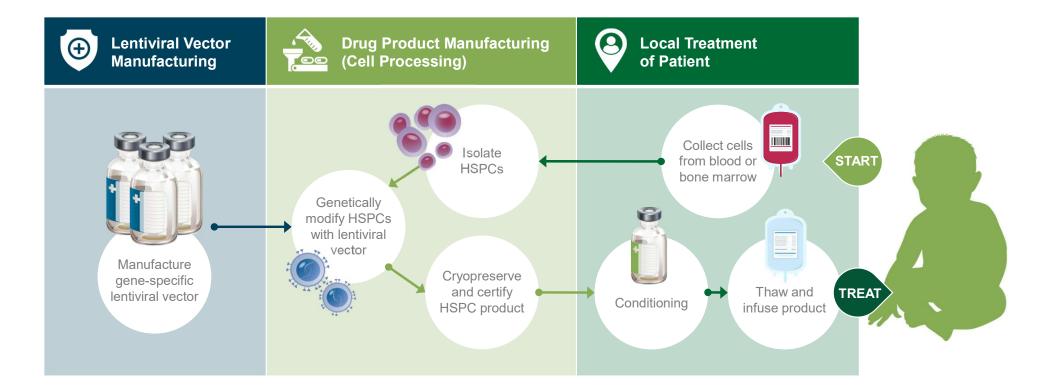
Essential research tools established and sourced for i) target validation and ii) evaluation of therapeutic approaches

Lentiviral vectors compatible for clinical gene modification designed and generated

Demonstrate restoration of NOD2 protein expression in murine and human cells can rescue a defective immune response to microbial peptides

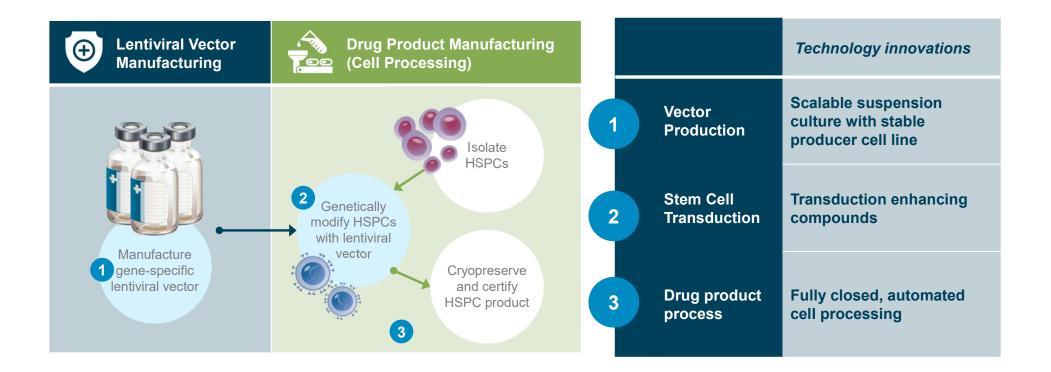
Today's Agenda

ТІМЕ	AGENDA TOPIC	SPEAKER
9:00 – 9:15am	Delivering Now; Building for the Future	Bobby Gaspar
9:15 – 9:35am	HSC Gene Therapy for Frontotemporal Dementia & Amyotrophic Lateral Sclerosis	Alessandra Biffi
9:35 – 9:55am	HSC Gene Therapy for Crohn's Disease	Bobby Gaspar & Piv Sagoo
9:55 – 10:10am	Q&A	
10:10 – 10:30am	Scaling Manufacturing for Larger Indications	Ran Zheng & Bobby Gaspar
10:30 – 10:45am	Revisiting Delivering Now; Building for the Future	Frank Thomas
10:45 – 11:00am	Q&A	
52		Conception of the second secon

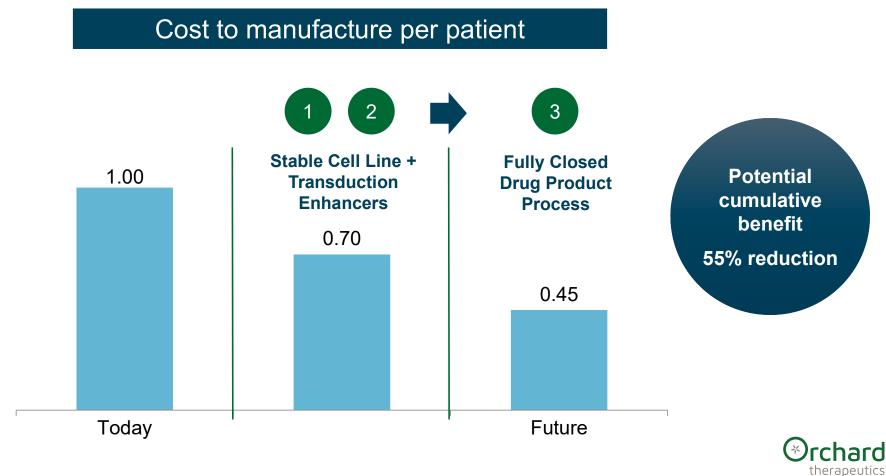

Approaches to Transform Commercial Scale Gene Therapy

Ran Zheng Chief technical officer

Bobby Gaspar *Chief executive officer*



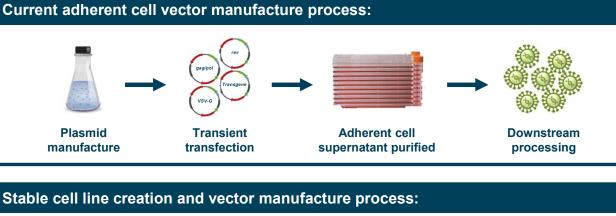
Overview of Current HSC Gene Therapy Manufacturing Process

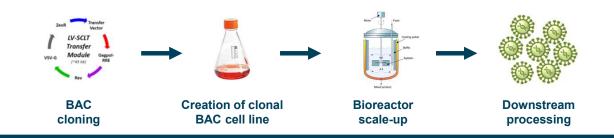


Improving the HSC Gene Therapy Manufacturing Process

Potential to Reduce Manufacturing Costs By > 50% Through Innovation

57 Confidential

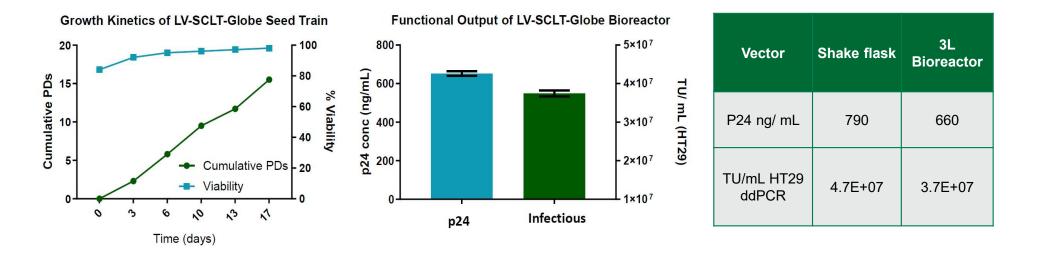

Scalable Stable Vector Producing Cell Line



SCL Technology Provides a More Scalable Manufacturing Process

- Simplified and more scalable batch manufacture process
- Obviate recurrent need to produce GMP-grade plasmids
- Vials of stable producer cell lines are expanded & induced for viral production
- Suspension adapted host cells are easier to scale up using bioreactor production systems

Clinical-scale LVV production



BAC Platform Bioreactor Evaluation Shows Vector Performance Comparable to Validated Current Adherent Process at Small Scale

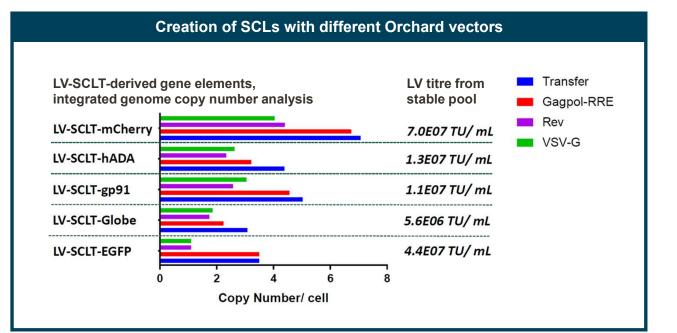
Clinical-scale LVV production

Results recapitulate transient transfection (i.e. current process) anticipated titers and compare to clinical scale transient processes productivity-wise

See also: Chen, Yu Hua, et al. "Rapid lentiviral vector producer cell line generation using a single DNA construct." Molecular Therapy-Methods & Clinical Development 19 (2020): 47-57.

60 BAC= bacterial artificial chromosome TU/mL = transducing units / mL, a measure of viral particles PDs = population doubling time

Data on file



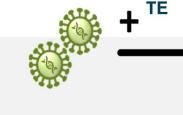
Application of BAC Platform to Orchard's LV Vectors

Successful creation of multiple new SCLs using BAC technology

Clinical-scale LVV production

- SCL pools (not clonal line); further clonal selection will identify highest expressing clones (often log-fold higher than pool average)
- Copy number of LVV components reflect BAC integration process
- LV titres show functional virus produced from all vectors
- Optimized workflow
 allows single high titre clone
 selection in 3 months

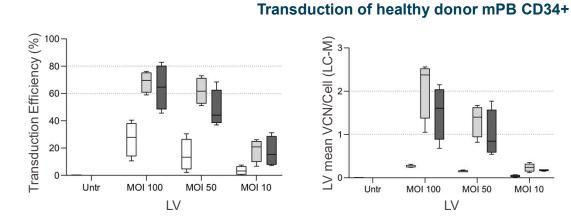
Transduction Enhancing Compounds

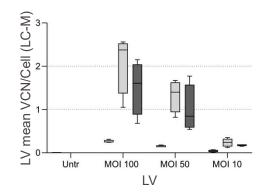


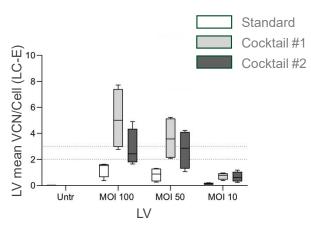
Addition of Transduction Enhancers (TE) Compounds During Transduction Process Can Greatly Reduce Vector Requirements

Compounds identified that can significantly reduce the multiplicities of infection (MOI) required to achieve a comparable VCN

Transduction Enhancing Compounds


Improved Stem Cell Gene Therapy Product & Reduced CoGs

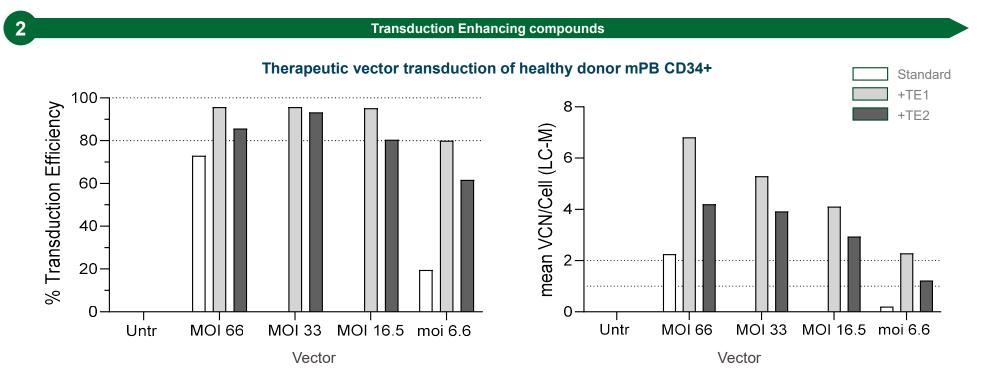



Orchard proprietary information

Orchard Proprietary Transduction Enhancer Combinations Permit >50% Reduction in Vector Requirements

Transduction Enhancing compounds

Transduction conditions	Mean % Transduction	Fold increase Transduction	mean VCN (range) in Eryth. LC	mean VCN (range) in Myel. LC	n=
Standard	26% (10-40)	_	1.27 (0.4-1.64)	0.26 (0.25-0.31)	4
TE1	69% (59-77)	2.4	5.13 (3.6-7.72)	2.09 (1.1-2.6)	4
TE2	67% (46-83)	2.3	3.2 (1.65-4.91)	1.51 (0.7-2.2)	4



VCN = vector copy number, TE = transduction efficiency

2

Data on file

Transduction Enhancers Effective with All Therapeutic Lentiviral Vectors Tested

Target drug product values achieved using a 75-90% reduction in vector

VCN = vector copy number, TE = transduction efficiency

Data on file

Fully Closed, Automated Drug Product Process

Automation Provides Opportunity for Increased Throughput with Reduced Labor

Technology Advancements Are Being Developed for the Next Generation of Orchard Programs

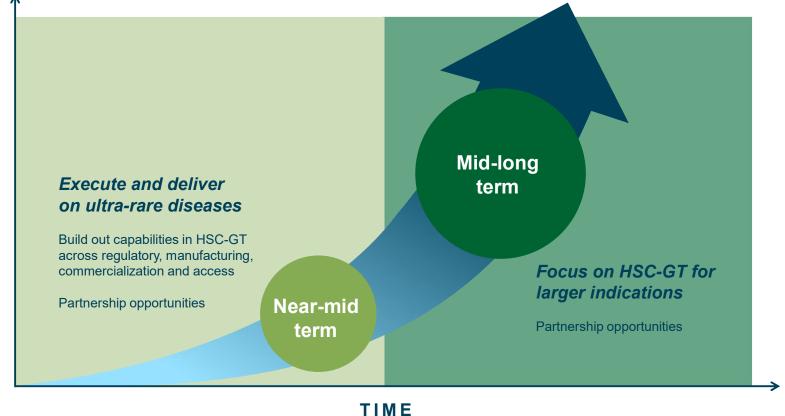
	Technology improvements	Shorter term (1-3 years)	Longer term (3+ years)
1	Scalable stable Vector producing cell line	 Scale-up, UPS + DPS process optimization 	 Further improvements and optimization Evaluate implementation into existing clinical programs as needed
2	Transduction enhancing compounds	 Incorporate into all new programs 	 Further improvements and optimization Evaluate implementation into existing clinical programs as needed
3	Fully closed, automated drug product process	 Evaluate implementation into existing and new programs 	 Further improvements and optimization as needed

Technology development

Technology implementation

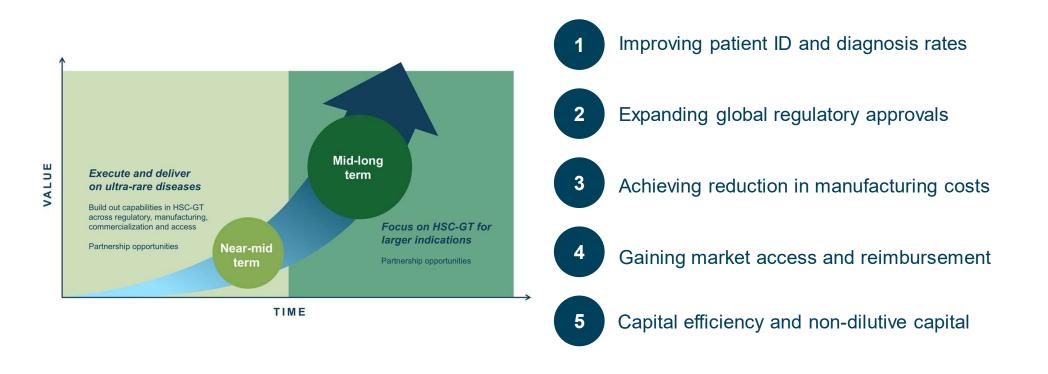
Today's Agenda

ТІМЕ	AGENDA TOPIC	SPEAKER
9:00 – 9:15am	Delivering Now; Building for the Future	Bobby Gaspar
9:15 – 9:35am	HSC Gene Therapy for Frontotemporal Dementia & Amyotrophic Lateral Sclerosis	Alessandra Biffi
9:35 – 9:55am	HSC Gene Therapy for Crohn's Disease	Bobby Gaspar & Piv Sagoo
9:55 – 10:10am	Q&A	
10:10 – 10:30am	Scaling Manufacturing for Larger Indications	Ran Zheng & Bobby Gaspar
10:30 – 10:45am	Revisiting Delivering Now; Building for the Future	Frank Thomas
10:45 – 11:00am	Q&A	Orchard

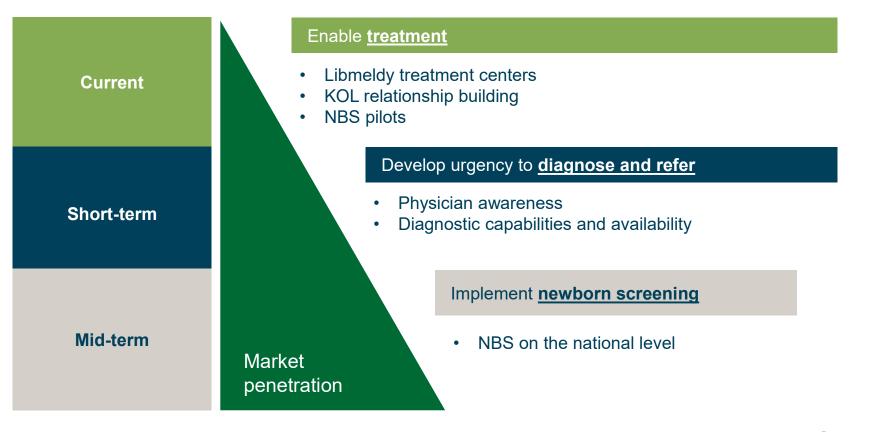

Revisiting Delivering Now; Building for the Future

Frank Thomas

President and chief operating officer

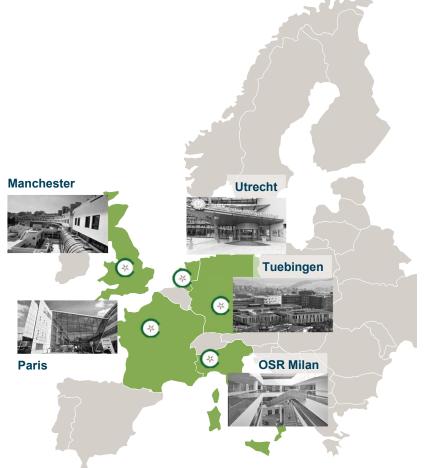

Delivering Value Now and for the Future

VALUE


Multiple Potential Success Factors Driving Valuation

Staged Investment in EU Commercial Infrastructure for Libmeldy

Leverage this infrastructure for future launches

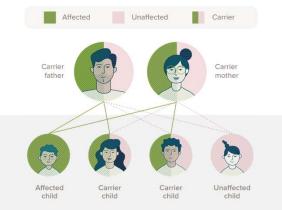


Planned Treatment Centers Preparing for EU Launch of Libmeldy in 2021

Key centers of excellence for lysosomal storage disorders and transplant identified; site qualification ongoing

Germany	Italy
France	UK
The Netherlands	
Serve as foundation for next wave	

of neurometabolic programs (MPS-I, MPS-IIIA)


Accelerating MLD Diagnosis from EU Launch of Libmeldy

Disease awareness

Provider education, web, media

Educating physicians, caregivers and general public

Diagnostic initiatives

No-charge testing & sibling screening

Facilitating biochemical and genetic testing

EU Commercial Supply Chain in Place for Libmeldy

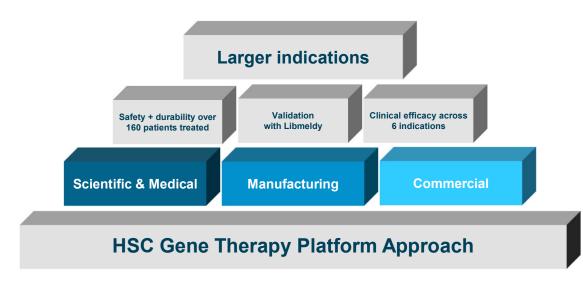
Secured Manufacturing Capacity

- Supply agreement signed with AGC Biologics (formerly MolMed) for long term lentiviral vector and drug product supply
- Milan facility EMA approved
- Prior commercial supply experience with Strimvelis

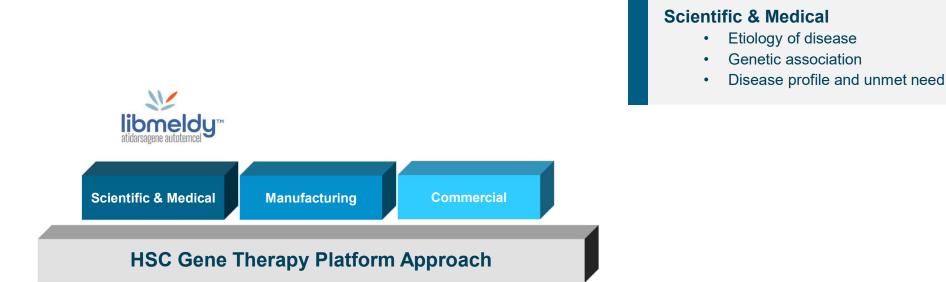
Treatment Center Qualification

- Five hospitals in Europe are becoming Qualified Treatment Centers (QTC)
- Delivering approved product information and manual to QTCs

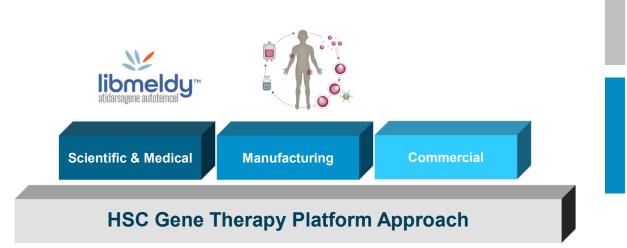
Inventory and Logistics Management


- Sufficient vector inventory to support launch
- Partnered with BeTheMatch Biotherapies to deliver Libmeldy

Building Competitive Strengths



Select Indications With Strong Scientific and Medical Rationale

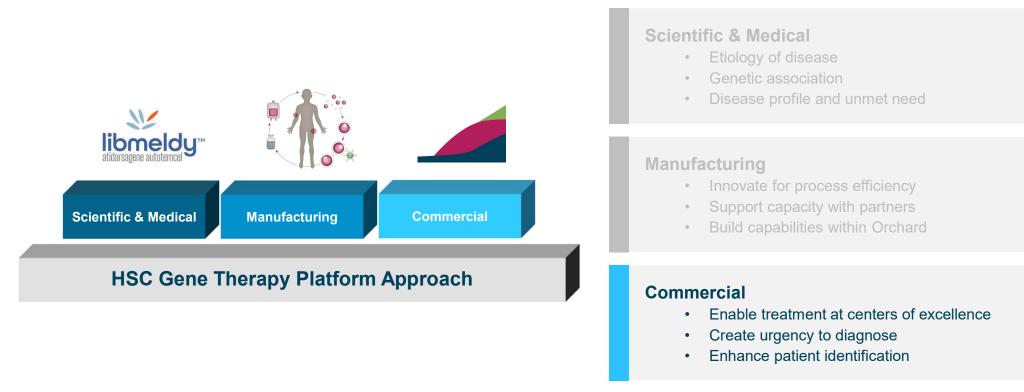

Building competitive strengths with our platform

Use Innovation to Drive Efficiency and Build Capacity

Building competitive strengths with our platform

Scientific & Medical

- Etiology of disease
- Genetic association
- Disease profile and unmet need


Manufacturing

- Innovate for process efficiency
- Support capacity with partners
- Build capabilities within Orchard

Build A Global Commercial Model That Can Support Multiple Products

Building Competitive Strengths With Our Platform Approach

Capital Allocation Strategy

Capital Allocation Strategy to Manage Growth and Dilution

1	Maintain Strong Balance Sheet	 Access equity markets following inflection points; supplement with non-dilutive capital
2	Invest for Growth	 Focus on highest value indications Stage investments in additional rare disease programs Allocate R&D capital for larger indications
3	Leverage Partnership Opportunities	 Consider partners for programs based on disease expertise and commercial footprint Leverage platform as engine for new indications with partners

New Horizons in HSC Gene Therapy

What you saw and heard today

HSC gene therapy has the potential to treat a broad range of severe diseases

Clinical validation in rare disorders builds confidence for larger indications

FTD, Crohn's and ALS programs are backed by strong scientific rationale

Prioritizing innovation in manufacturing to accelerate profitability and scale-up

Building commercial capabilities to leverage with future products

